I. Quels courante électrique dans la maison ou l'entreprise ?

A. Introduction :

Nous utilisons chaque jours des objets qui fonctionnent grâce à de l'énergie.

Quels types d'énergies a-t-on utilisées et, actuellement, quels types d'énergies utilise-t-on ?

Intéressons nous plus particulièrement à On retrouve ce type d'énergie dans notre quotidien. Citer plusieurs appareils utilisant cette énergie ?

<table>
<thead>
<tr>
<th>Appareils</th>
<th>Origine de l'apport d'énergie</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mais d'où vient cette énergie ? Dans le tableau suivant indiquer pour chaque appareils l'origine de l'apport d'énergie nécessaire à leur fonctionnement.
Conclusion :

B. Les différents types de courants électriques :

On a vu que dans une maison, par exemple, on utilise des objets qui n'ont pas la même source d'électricité.

Fiche : ..

1. Observation de tensions :

L'oscilloscope permet de visualiser l'évolution d'une tension électrique en fonction du temps.

(1) Tension alternative : ..
(2) Tension périodique : ..
(3) Tension sinusoïdale : ..
2. Caractérisation d'une tension alternative sinusoïdale :

<table>
<thead>
<tr>
<th>Grandeur</th>
<th>Unité</th>
<th>Formule à appliquer</th>
<th>Exemple</th>
</tr>
</thead>
<tbody>
<tr>
<td>Période</td>
<td>seconde</td>
<td>$T = \text{nombre de carreaux} \times \text{calibre horizontal}$</td>
<td>$T = 4 \times 2 = 8 \text{ ms} = 0,008 \text{ s}$</td>
</tr>
<tr>
<td>Fréquence</td>
<td>Hertz</td>
<td>$f = \frac{1}{T}$</td>
<td>$f = \frac{1}{0,008} = 125 \text{ Hz}$</td>
</tr>
<tr>
<td>Tension maximale</td>
<td>Volt</td>
<td>$U_{\text{max}} = \text{nombre de carreaux} \times \text{calibre vertical}$</td>
<td>$U_{\text{max}} = 3 \times 2 = 6 \text{ V}$</td>
</tr>
<tr>
<td>Tension efficace</td>
<td>Volt</td>
<td>$U = \frac{U_{\text{max}}}{\sqrt{2}}$</td>
<td>$U = \frac{6}{\sqrt{2}} \approx 4,24 \text{ V}$</td>
</tr>
</tbody>
</table>

En France, la tension du secteur est alternative sinusoïdale, de valeur efficace $U = 230V$ et de fréquence $f = 50Hz$.